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Abstract—To achieve complete autonomy of unmanned ground
vehicles (UGVs) in off-road terrain at high speeds, a robot must
understand and analyze the terrain it is driving on in real-time
just as a human analyzes the terrain and makes decisions of
where to drive. Much research has been done in the way of
obstacle avoidance, terrain classification, and path planning, but
there has yet to be seen a system that can accurately traverse off-
road environments at high speeds in an autonomous fashion. We
present algorithms that analyze the off-road terrain using a point
cloud produced by a 3D laser range finder, determine potential
hazards both above ground and those where the ground cover
has a negative slope, then plan safe routes around those hazards.
We take into account problems such as high-centering, tip-over,
and overhanging obstacles. In this paper we discuss a real-time
approach to analyzing the traversability of off-road terrain for
UGVs considering positive and negative obstacles using multi-
level surface maps and planning paths to a goal state.

Index Terms—UGV, lidar, velodyne, autonomous, autonomy,
unmanned, off-road, point cloud, 3D, 2.5D, traversability, maps,
path planning, multi-level surface, classification

I. INTRODUCTION

Unmanned vehicle navigation and obstacle avoidance has
had major breakthroughs in the last few years, showing that
a vehicle can drive autonomously at high speeds in highly
controlled desert and urban environments such as was proved
in the Defense Advanced Research Projects Agency (DARPA)
Grand Challenge and DARPA Urban Challenge [1]. As well,
Jet Propulsion Laboratory (JPL) has shown that unmanned
vehicles “Spirit” and “Opportunity” can navigate through the
harshest of off-road environments, Mars. Yet when it comes to
military operations in rugged off-road terrain, the technology
is vastly behind. Explosive Ordnance Disposal technicians are
still carefully maneuvering ground vehicles by remote control
using the video feed on a bulky hardened laptop. This technol-
ogy lag is in large part due to lack of real-time autonomous off-
road traversability analysis for an unmanned ground vehicles
(UGV). Military applications for UGVs such as resupply,
casualty evacuation, surveillance, and reconnaissance must
accommodate off-road terrain based upon the warfighting areas
in which the US military is currently involved. Accurately
representing off-road terrain and analyzing it in real-time is
a challenge for most UGV robotic systems and the majority
of UGVs operate at slow speeds over relatively flat terrain.
Several recent Marine Corp Warfighting Laboratory (MCWL)
limited objective experiments (LOEs) focused on the enhanced

company operations scenario. These LOEs were conducted
using commercially designed UGVs from companies such as
GDRS, TORC, and others. The initial reports are that none
of these systems can effectively navigate mountainous roads
with moderate drops and tight turns. This research is aimed
at developing methods of safely traversing rough terrain at
high speeds by first detecting obstacles, second producing
traversability scores for each terrain location, and finally
planning a safe route to avoid those predetermined hazards.

II. RELATED RESEARCH

Due to the importance for robotic vehicle mobility, obsta-
cle detection and avoidance for UGVs has been thoroughly
explored in the past. The use of camera systems has received
much more attention than the use of lidar. Passive ranging
systems such as stereo cameras have proven to be beneficial
to understanding the environment. JPL has demonstrated large
gains in using passive systems such as stereo cameras [2, 3]:
they have a low cost, do not emit electromagnetic signatures,
are easy to fuse with color images, provide long range data,
but oftentimes have a small angular resolution. On the other
hand, lidar provides high resolution (even up to 360 degrees),
produces higher quality range data, is getting cheaper, does not
require as much computational time and hardware to return a
point cloud, and was one of the main sensors used for those
teams that successfully completed the DARPA challenges.
Carnegie Mellon University has shown [4] how to use lidar to
classify natural terrain into saliency features such as scatter,
linear, or surface which can be used for traversability.

The point cloud data retrieved from the sensor systems can
be modeled using a 2D, 2.5D, or 3D map. A 2D grid map,
also known as an occupancy grid, uses the binary values of 1
or 0 as grid cells that hold obstacles or not. These systems are
of great use for path planning and navigation since a robot
is very interested in the location of obstacles. The 3D grid
map is made up of voxels that take up considerably large
amount of memory and complexity but are very useful for
path planning in air and under water applications [5]. Because
of the complexity and time required to analyze 3D data, a
very common method of extraction is to model the terrain
in a 2D grid with extended information and is referred to as
2.5D, which will hold much more meaningful information of
the cell, more than just a binary value of a 2D occupancy map.
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An accurate world map is not complete without a model
of the surrounding obstacles. We refer to those hazards of
negative slope such as a steep downhill, drop-off, or gap as
a negative obstacle. These can be detected by looking for
negative slopes that are too steep or gaps in data that exceed
a width threshold[6, 7]. This analysis also needs to consider
occlusions from other obstacles [8, 9]. As well, positive
obstacles include anything standing out in the positive territory
of the ground, such as rocks, trees, poles, buildings, and steep
uphill slopes that might cause tip-over [10, 11]. In addition to
detecting untraversable obstacles it is valuable to classify the
traversability of each grid cell, making it restrictively harder
(but not impossible) to plan paths through those areas.

Path Planning...

III. APPROACH

A. Terrain Representation & Multi-Level Surface Maps

To simplify the data and process it in real-time, we arrange
the 3D laser points to fit inside a fixed size Cartesian grid
of 2.5D cells, approximately 40 cm x 40 cm, measuring 100
meters in the x and y directions (see Figure 1). For reference,
we use a right-handed coordinate system where x goes to the
left and right of the vehicle, y measures what is in front and
behind, and z comes out of the ground plane. Each cell in the
2.5D grid contains additional information, such as elevation,
terrain traversability measures, and so on. Although this 2.5D
grid can be very efficient for determining ground cover, it
is limited in its ability to detect overhanging obstacles or
pathways such as bridges or overhanging trees.

A multi-level surface map as discussed in [12, 13] allows
multiple surface levels to be represented in one grid cell,
which can aid in correctly classifying overhanging obstacles
and provide additional search paths if one of those surfaces is
a bridged road above the robot. The surfaces retain statistical
information of all points that lie in it such as elevation mean
and variance, number of points, and maximum and minimum
elevation. The surface level has a variance threshold for the
elevation variance of points that fit inside that cell and when
exceeded, is referred to as a vertical surface or a positive
obstacle. Otherwise the surface is referred to as a horizontal
surface. Any point that lies above a surface level with a
distance greater than the height of the robot from the maximum
value of the lower surface level, will be considered a new
surface level. Thus the traversability component of the robot
may plan routes through grid cells with multiple layers. These
surface levels are ordered from lowest to highest for fast
lookup when adding new data points. If points are added
that lie between two surface levels that remove the safe robot
height distance between two surface levels, then those levels
are merged into one and variances, means, and depth values
are recalculated.

We represent the elevation of the data points that fall into
the surface level as a Gaussian distribution. For fast processing
and to reduce the amount of memory used, online calculations
of mean and variance are used. In our case we used a formula
for calculating an unbiased estimate of the population variance

Figure 1: Grid cells calculated from the elevations of the data
points of a single frame. (Brown color represents the ground
while red, green, and yellow represents hazards)

Figure 2: Geometry of negative obstacle detection
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This calculation can easily be computed and merged with
other surface levels by keeping track of the number of points
that fall into this surface level, the cumulative sum of eleva-
tions, and cumulative sum of the squares of the elevations.

B. Negative Obstacles

Negative obstacles are ditches or terrain with a steep nega-
tive slope that if traversed would be a hazard to the vehicle.
Negative obstacles can be just as hazardous to unmanned
vehicles as obstacles above ground. In fact, negative obstacles
are much harder to detect from close up and nearly impossible
from far away. The equation for detecting negative obstacles
comes from [14] and shown in Figure 2 where the width of the
obstacle is w, H is the height of the sensor from the ground,
h is the depth of the obstacle seen by the sensor, R is the
range from the sensor to the obstacle. The equation to solve
for θ is

θ =
Hw

R(R+ w)
(2)

The angle θ decreases significantly as the range increases
( 1
R2 ), which makes negative obstacles increasingly difficult

to detect since the vertical angular resolution of the lidar
also decreases with range. Yet detecting negative obstacles at
greater ranges is essential because this application is intended
for use on fast moving UGVs, upwards of 30mph, and faster
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speeds requires a greater stopping distance. It is known from
[15, 14] that the look-ahead distance needs to be at least:

R =
v2

2µg
+ vTr +B (3)

where µ is the coefficient of static friction between ground
and wheels with a common value of 0.65, g is gravitational
acceleration with a value of 9.8, Tris the total reaction time
with a common value of 0.25, and B is a buffer distance used
for safety with a value of 2 in our experiments. The velocity
value becomes the dominant term at v>3.2 m/s: for a velocity
of 15 mph or 6.7 m/s, the distance needed to stop is 7.2 m;
for a velocity of 30 mph or 13.4 m/s, the distance needed to
stop is 19.4 m.

Because of the difficulty in detecting negative obstacles,
our algorithm is very conservative and scans for any potential
negative obstacles, then labels them for further analysis. We
believe it is better to be cautious and safe when dealing with
expensive robotic equipment. Figures 3a and 3b depict a large
gap in data that would be tagged as a potential negative
obstacle but when investigated further, turns out to be a steep
slope that can be traversed.

We classify potential negative obstacles by first detecting
gaps, patches of no data that exceed some width, where there
could exist a ditch or negative slope. The search is done by
tracing a ray of 3D points outward from the sensor, following
the returns from the vertical alignment of lasers starting with
the lowest angle of incidence towards the highest angle. If a
gap is found with a distance greater than some width threshold
(which will be variable dependent upon the vertical angle of
incidence), then the data before it and after it is analyzed for
clues. The width threshold value we used was greater than
1 meter as well as twice the distance of the width from the
previous laser point to the beginning of the gap. It is important
to determine if the gap was caused by a potential negative
obstacle or a positive obstacle. A positive obstacle will have
a prohibitively steep slope over a range of points prior to the
gap. If the gap is a result of a positive obstacle, it will not
be classified as a negative obstacle since the platform will not
be able to traverse the positive obstacle anyway. If the gap
is indeed classified as a negative obstacle, it is the result that
either the negative elevation drop is significant (more than
1 meter for our purposes), or the data after the gap has a
significant positive slope (as the sloping up-side of a ditch),
see Figure 4.

Those sections of the ray tracings that are classified as
potential negative obstacles (Figure 5a) are translated into
its world model grid cell counterpart and recorded as a hit
of a potential negative obstacle (Figure 5b) for purposes of
traversability analysis. If enough hits are recorded in a cell, it
is classified as a potential negative obstacle and displayed on
the map. Because this algorithm is more cautious in classifying
potential negative obstacles, it will report many false positives,
especially at farther ranges, and should not be treated as
untraversable. Instead the robot is allowed to approach these
areas, but should do so with caution and reduced speed, which
can be implemented into the path planning cycle. This software
will be integrated with SPAWAR Systems Center Pacific’s

(a)

(b)

Figure 3: 3D point cloud returns from sequential frames. The
area in the bottom middle of each image has a steep negative
slope. In (3a) the slope hasn’t been detected yet and would
be classified as a potential negative obstacle. In (3b) there is
more data and the area can now be correctly detected as a
negative slope.

Autonomous Capabilities Suite (ACS) architecture. ACS could
use it’s fuzzy logic planner [16] to place potential negative
obstacles as obstacles in the range abstraction regions l_front
or r_front, giving them a fuzzy set value of Close or Not Close,
which according to the fuzzy associate memory rules, causes
the robot to approach more slowly but not stop.

Those potential negative obstacles that are within a short
range of the robot should be considered actual negative obsta-
cles and avoided.

C. Traversability Analysis

A cell receives a traversability score based on the existence
of a positive obstacle, a step edge obstacle, the steepness of
the slope of its surrounding neighbors, and the slope residual
(roughness). Positive obstacle detection was already performed
when the data were inserted into the multi-level surface map.
A positive obstacle is revealed when the elevation variance of
a surface level (calculated when the 3D data points fall into
the surface level of a cell) exceeds a variance threshold: this
method ignores extreme outliers when there is enough data.
Another hazard feature called a step edge can be detected by
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(a) Gap followed by a large drop in elevation: potential
negative obstacle

(b) Gap followed by a steep uphill slope: potential negative
obstacle

(c) Slight uphill slope followed by a gap and drop in
elevation: potential negative obstacle

(d) Positive obstacle followed by a gap: not a potential
negative obstacle

Figure 4: Ray tracing examples with results determined during
potential negative obstacle detection step

(a) Potential negative obstacle rays (b) Potential negative obstacle pix-
els

Figure 5: Potential negative obstacle displays

calculating the elevation differences between cells, which is
UGV size dependent. If the UGV is small with small tires
or treads, then even a small gap in elevation could block or
tip over the robot. In addition, the slope of the surrounding
area of each cell is calculated by fitting the points to a
plane and finding the surface normal of that plane using
the eigenvector of the smallest eigenvalue of the covariance
matrix. At this point in the analysis, all the of individual
data point information has been erased and only the statistical
information for each surface level of the cells remain. To
calculate the covariance matrix, we will be using the mean
of the elevation (the z component) and the x and y values of
each of the grid cells, centered from the robot. Note that it is
not required to calculate the slope of the obstacle cells since
the vehicle will not be traveling over them. In our tests we
use the 8 connected neighbors of each cell, and only calculate
the slope if there are at least 4 neighbors. The x̄, ȳ, and z̄
represent the mean values of the x, y, and z values of the
neighbors.

Figure 6: Grid cells painted on the screen with various colors
representing the its classification: brown is a horizontal cell
(ground), blue is a potential negative obstacle, green is a step
edge, yellow is slope (with surface normal included), and red
is a positive obstacle

M =


(x1 − x̄) (y1 − ȳ) (z1 − z̄)
(x2 − x̄) (y2 − ȳ) (z2 − z̄)

... ... ...
(xn − x̄) (yn − ȳ) (zn − z̄)

 (4)

Lets define A = MTM , which when divided by the number
of data points becomes the covariance matrix of the data. To
find the eigenvalues and eigenvectors of the covariance matrix,
we use the singular value decomposition (SVD). But we really
only need M , not A. M = USV T where U is an orthogonal
matrix, S is a diagonal matrix of the singular values of M ,
and the columns of V contain its singular vectors.

A = MTM = (USV T )T (USV T ) = V STUTUSV T = V S2V T

(5)
This shows us that the singular values of A are just the

squares of the singular values of M and the singular vectors
of A are the singular values of M .

If the absolute value of the surface normal difference from
the gravity normal is too great, then it is classified as a slope
obstacle. We also use the residual of the plane fit function
to determine roughness of the area, which is added into the
traversability of the cell.

After the cell has been given its traversability score based
on obstacles, step edge, slope, and slope residual (see Figure
6), it is time to choose the correct path.

D. Path Planning

The data collected from most lidar sensors, mounted on
a robotic vehicle, without any a priori information, will not
provide adequate range to create a large enough map to plan
optimal paths to a goal location of any significant distance.
Our methods focus on the near field path planning using an
arc-based planner (Figure 7), similar to those done in [17]
as well as on the Mars Rovers. The path planning algorithm
simulates placing the platform centered on the cells of the
arc (starting at the sensor and moving outward) and summing
the traversability scores for all the cells the vehicle would
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Figure 7: Reactive path planning arcs

Figure 8: Chosen arc

run over (this usually includes a wider selection of cells
than just those just in the arc). The traversability score for
each cell should already be calculated based on the terrain
found inside it: positive obstacles, step edges, slope, and slope
residual. Furthermore, penalties are added for tip-over and
high-centering, which can be calculated from all of the cells
underneath the vehicle. Due to the inherent curvature of the
arcs and the disconnect between the actual ackerman steering
capabilities of the vehicle (rotating in place), there will be arcs
chosen which provide the best route for the first section of the
path but eventually curve into obstacles. Since the robot will
be calculating the traversability arc multiple times a second
and revising its arc selection just as quickly, more weight
is given to the cells of the arc in the closer regions than
those in the farther regions. Deviation from the desired arc
(the predetermined path) is also added into the score. As each
individual pixel score is being accumulated, if the total score
exceeds a threshold of acceptability, the process is halted for
this arc and the arc is thrown away. The arc with the best
score is kept (See Figure 8). For additional speed and reduced
search, once an arc with a “good enough” score is found, it
can be chosen as the desired arc and the search ends.

Figure 9: Max ATV platform

E. Platform & Sensors

All of the traversability analysis methods and software we
have developed have been exclusively for use on an unmanned
ground vehicle with a 3D lidar sensor. Our first intended
platform is a Max ATV, Figure 9, mounted with a roll bar
to protect against tipping. The vehicle primarily depends on
the Velodyne HDL-64E sensor for data of the surrounding
environment, a lidar system with 64 lasers delivering 360
degree horizontal field of view with 26.8 degree vertical field
of view, providing 100,000 data points at 10Hz. This system
provides readings of range and intensity out to a distance of
120 meters. We plan to implement a vertical tilting mechanism
on the lidar sensor to get a better view of negative obstacles
at close ranges. The goal is to implement the traversability
analysis software to be UGV platform independent and we
have already begun testing this software on data sets captured
from a Hokuyo UTM-30LX lidar sensor, set in a vertically
rotating mechanism, mounted on an iRobot Packbot, with good
results.

IV. RESULTS

One of our main objectives with this project has been to
provide a system that can not only detect hazards and avoid
them, but to do it in real-time, that is to say, allow the robot to
make decisions about where to go while it is going. The Max
ATV platform has yet to be fully developed to be controlled
by software, so all of our results have been performed on real
data collected from the lidar sensor mounted on the vehicle
which is manually driven over an off-road course. An image of
the course can be seen in Figure 10. The lidar collected 1122
full frames of point cloud data, and our algorithm was able
to process each frame, detecting all hazards and providing a
suggested route, as well as display the data on the screen, at
an average rate of 2.23 Hz. on a dual-core laptop machine. We
believe this rate to be sufficient for a vehicle to perform hazard
detection and avoidance at speeds of up to 10 mph (4.5 m/s),
as long as the hazards can be detected at sufficient ranges.
The ranges of hazard detection in this data set are provided in
table I.
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Figure 10: Off-road course Google sky-view image

Hazard Feature Max. Detection Range Description
Positive obstacle 113.4 Vegetation
Negative obstacle 82.6 Steep slope

Overhang 100.6 Tall vegetation
Step edge 115.1 Steep hill

Steep slope 115.1 Steep hill

Table I: Hazard detection ranges

V. FUTURE WORK

We have noticed that even in off-road environments, there
is usually some worn down pathway that resembles a road,
and that a UGV will have a much easier time navigating if it
can stay on that road. We plan to add a scoring weight into
the path planning step to favor the trajectories that stay on the
road.

As well, in off-road terrain, many paths have overgrown
vegetation that, to a simple obstacle detector, appear to be an
obstacle. Thus the traversability analysis will block those paths
even if a human operator would easily drive through the path
and let a few branches scrape the vehicle. We have run a simple
method of a sliding window over horizontal sections of points,
looking for straight lines, with the idea that vegetation will not
have straight lines. For a majority of the vegetation this method
classifies correctly (see Figure 11), but has a high false positive
rate, especially for thin structures, like metal poles or thin tree
trunks. One of the ways we plan on classifying vegetation
and for further traversability analysis of that vegetation is to
cluster the data points by location as well as add a calibrated
video camera for further color segmentation and run principle
component analysis (PCA) to classify scatter, linear, or planar
objects.

Due of the limitation of the close-range sensors to create
a large global map to be used for path planning to a goal
location, we shall be researching the best ways to use aerial
imagery, fused with local obstacle data obtained from our
sensors, to obtain a general idea of the direction to travel to
reach a goal.
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